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Abstract. We use aircraft observations of continental outflow over the western Pacific

from the TRACE-P mission (March-April, 2001), in combination with an inverse model,

to improve emission estimates of carbon monoxide (CO) from Asia. We use as a priori

a customised bottom-up Asian emission inventory for the TRACE-P period and apply an

optimal estimation inverse method to calculate a posteriori emissions that are consistent with

both the observed CO distribution, the bottom-up inventory, and their respective errors. The

global GEOS-CHEM chemical transport model (CTM) is the forward model in the inverse

method. We describe an innovative method to quantify model transport error from the relative

error statistics between the aircraft observations of CO and the forward model results with

a priori emissions. We assume that the mean relative error is determined by errors in a priori

emissions, while the residual variance in the relative error is due to the model transport.

The model transport error is found to be typically 20-30%; additional contributions to the

error budget in the inverse analysis include the representativeness error (typically 5%), and

measurement noise (�1%). Analysis of averaging kernels suggests that the inverse model can

usefully constrain six sources: Chinese fuel consumption, Chinese biomass burning, combined

total emissions from Korea and Japan, total emissions from Southeast Asia, total emissions

from India, and the ensemble of all other sources. The principal result of the inversion is

a 30% increase in anthropogenic emission from China (to 142 Tg CO yr��) relative to the

a priori; this value is still much lower than had been derived in previous inversions using

the sparse network of surface observations. A posteriori emissions of biomass burning in

Southeast Asia and India are much lower than assumed a priori.
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1. Introduction

Understanding and predicting the atmospheric distribution of a chemical species requires

information on the emissions of that species and of its precursors. The bottom-up approach to

compiling emission inventories generally relies on emission factors for individual processes,

extrapolated in space and time using socioeconomic or energy data. Top-down constraints

from atmospheric concentration measurements, interpreted with a chemical tracer model

(CTM), can be used to improve the bottom-up estimates through an optimal estimation

methodology (inverse model). Almost all inverse modeling studies of emissions so far have

used atmospheric concentrations measured from networks of surface sites; however, these

sites are often not well situated to provide constraints on emissions. We present here the first

application of inverse modeling to observations from an aircraft mission targeted at sampling

continental outflow. As we will show, the high density of aircraft observations over a range of

outflow pathways provides considerable information for inverse modeling, and also allows us

to quantify CTM transport errors for use in the inverse model. Our detailed specification of

these errors represents a major advance over previous inverse model studies.

We apply the inverse model approach to aircraft observations of carbon monoxide (CO)

taken during the NASA Transport And Chemical Evolution over the Pacific (TRACE-P)

mission in March-April 2001 [Jacob et al., 2002]. The TRACE-P mission used two aircraft

(DC-8 and P-3B), based in Hong Kong and Tokyo, to sample Asian chemical outflow along

the Pacific rim (Plate 1). Carbon monoxide is a general product of incomplete combustion, Plate 1

and has an atmospheric lifetime of a few months against oxidation by OH, its main sink.
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Asian sources of CO during TRACE-P included anthropogenic emissions from fossil fuel

and biofuel consumption, as well as seasonal biomass burning in Southeast Asia [Streets

et al., 2002; Heald et al., 2002b]. The major meteorological processes leading to outflow of

anthropogenic Asian pollution during TRACE-P included warm conveyor belts (WCBs) ahead

of southeastward-moving cold fronts, and transport in the boundary layer behind these fronts

[Liu et al., 2002]. Outflow of biomass burning effluents from Southeast Asia took place by

deep convection, and by WCBs, the latter process leading to mixing with the anthropogenic

outflow [Ma et al., 2002; Tang et al., 2002]. The lifetime of CO is long enough that long-range

transport from European and North American sources, as well as oxidation of methane and

biogenic non-methane volatile organic compounds (NMVOCs), also contributes to Asian

outflow; but these contributions are mainly to background CO and did not produce detectable

enhancements in the TRACE-P observations [Liu et al., 2002].

Our inversion analysis uses the TRACE-P aircraft observations, together with a priori

information on Asian emissions from customised bottom-up inventories produced for the

TRACE-P period [Streets et al., 2002; Heald et al., 2002b], to obtain optimised a posteriori

estimates of CO emissions from different source regions in Asia. The inverse model approach

has been used previously in three studies investigating the emissions of CO [Bergamaschi

et al., 2000; Kasibhatla et al., 2002; Pétron et al., 2002]. These studies all used the global

measurements of CO from the NOAA/CMDL network [Novelli et al., 1998] as top-down

constraints. Bergamaschi et al. [2000] found that their bottom-up emission inventories were

too low and attributed the cause either to anthropogenic emissions or to the source of CO

from oxidation of biogenic terpenes. Kasibhatla et al. [2002] and Pétron et al. [2002] used
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a geographically disaggregated approach to identify emissions from specific regions. In

particular, Kasibhatla et al. [2002] found that their a priori emissions from Asia were too

low, and reconciled this with the rapid industrialisation of the region in recent years. One

major disadvantage to using NOAA/CMDL stations for inverse modeling of continental

source emissions is that they are positioned purposely to measure the remote troposphere; and

consequently concentrations measured at these sites tend to have complex source signatures.

In the next section we briefly describe the GEOS-CHEM CTM used here to simulate

CO during TRACE-P, and present a comparison between the modeled and measured

concentrations of CO. Section 3 describes the inverse model and explores the potential

of TRACE-P measurements to constrain emission estimates from particular geographical

regions. Section 4 presents the inverse model analysis of the TRACE-P data, and investigates

the sensitivity of results to different assumptions. Section 5 places the results in the context of

previous work. We conclude the paper in section 6.

2. GEOS-CHEM Model Simulation of CO During TRACE-P

2.1. Model Description

The GEOS-CHEM global 3-D model of tropospheric chemistry [Bey et al., 2001a] is

used here to relate sources of CO to atmospheric concentrations, and constitutes the forward

model in the inverse analysis (section 3). A recent application of GEOS-CHEM to the

simulation of CO, including evaluation with the ensemble of NOAA/CMDL observations,

is presented by Duncan et al. [2002a]. The model version used here (v4.33, http://www-
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as.harvard.edu/chemistry/trop/geos/index.html) has a horizontal resolution of 2Æ latitude�2.5Æ

longitude, and has 48 vertical levels ranging from the surface to the mesosphere, 20 of which

are below 12 km. The model is driven by assimilated meteorology from the Goddard Earth

Observing System (GEOS) of the NASA Data Assimilation Office. The 3-D meteorological

data are updated every six hours; mixing depths and surface fields are updated every three

hours.

Gridded CO emission inventories for fossil fuel, biofuel, and biomass burning in East

Asia during the TRACE-P period [Streets et al., 2002; Heald et al., 2002b] are used as

a priori by the model. The Streets et al. [2002] inventory describes anthropogenic fossil

fuel and biofuel emissions for the year 2000. Fossil fuel emissions are from residential coal

(used for cooking and heating), transportation, and industry. Daily, weekly and seasonal

variability in fossil fuel emissions reflects changes largely in transportation. We account only

for daily and weekly variability; seasonal variation of fossil fuel emissions from transportation

represents only a small fraction of total CO emissions from countries within Asia [Streets

et al., 2002]. The biofuel inventory of Streets et al. [2002] includes sources from fuel wood,

agricultural residues, and dung. The seasonal variation of biofuels, associated mainly with

domestic heating, is presented by Streets et al. [2002] and represents only a few percent of

the total emissions of CO from Asia. During TRACE-P biofuel emissions were found to be

approximately at their annual mean value [Streets et al., 2002], with emissions during April

10% lower than those during March due to the exiting of the domestic heating season. This

seasonality is not considered in our model. Streets et al. [2002] provide detailed error estimates

associated with their national emissions from Asia, representing important information for the
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inverse model analysis. Fossil fuel and biofuel emissions for the rest of the world are taken

here from Duncan et al. [2002a] and Yevich and Logan [2002], respectively.

We use daily biomass burning CO emissions for the TRACE-P period from Heald et al.

[2002b]. This inventory uses firecount data from the AVHRR satellite instrument [Stroppiana

et al., 2000] to constrain daily variability. It applies this variability to the biomass burning

emission inventory of CO from Duncan et al. [2002b], which includes interannual and

seasonal variability derived from TOMS, ATSR, and AVHRR satellite observations. Global

biomass burning emissions during TRACE-P were mainly from Southeast Asia and India, and

were approximately the same as the climatological average for February�April [Heald et al.,

2002b].

In addition to direct emissions of CO there is a large chemical source from the oxidation

of methane and NMVOCs which is treated here following the approach of Duncan et al.

[2002a]. Anthropogenic and biomass burning NMVOCs are in general co-emitted with

CO; following Duncan et al. [2002a] we model them here as direct sources of CO and

correspondingly increase the primary emissions of CO by 20% (fossil fuel) and 10%

(biofuel and biomass burning). Additional sources of CO in the model include methane

(850 Tg CO/yr), and biogenic NMVOCs with contributions from isoprene (175 Tg CO/yr),

methanol (85 Tg CO/yr), monoterpenes (70 Tg CO/yr), and acetone(25 Tg CO/yr). Details of

these sources can be found in Duncan et al. [2002a].

The main sink for CO is oxidation by OH. We use prescribed monthly mean OH

concentration fields calculated from a full-chemistry simulation conducted with GEOS-

CHEM v4.33. The corresponding lifetime of methylchloroform (CH�CCl�), a proxy for
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the global mean OH concentration, is 6.3 years; this is consistent with the best estimate of

5.99�����
����� years by Prinn et al. [2001] from CH�CCl� measurements. A detailed discussion

of the factors affecting the CH�CCl� lifetime in GEOS-CHEM is presented by Martin et al.

[2002]. Although adjustment of CO sources in the inverse model analysis should modify OH,

the effect is inconsequential for inverting Asian sources using the TRACE-P observations,

which are only a few days downwind of the sources. This assumption of fixed OH linearises

the inverse problem [Kasibhatla et al., 2002]. Jacobian matrices for the inversion, relating

individual sources of CO to the resulting atmospheric concentrations, can then be readily

generated with a ‘tagged’ CO simulation in which total CO is linearly decomposed into

contributions from sources in different geographic regions and of different types (Figure 1; Figure 1

Table 1). Table 1

A number of previous GEOS-CHEM model studies have evaluated the simulation of CO

with surface and aircraft observations in different regions of the world [Bey et al., 2001ab;

Fiore et al., 2002; Li. et al., 2002; Martin et al., 2002; Duncan et al., 2002a; Kasibhatla et al.,

2002]. These studies used different versions of GEOS-CHEM, with different CO sources

and OH concentrations, so that results are not strictly comparable. The global underestimate

of CO reported in the original version of GEOS-CHEM [Bey et al., 2001a] has since been

corrected by better accounting of NMVOC precursors and of various factors acting to reduce

OH [Martin et al., 2002; Duncan et al., 2002a]. The most recent global evaluation [Duncan

et al., 2002a] indicates no bias in the simulation of the CO background, and this appears to

hold also for v4.33 used here [Heald et al., 2002b]. However, both Duncan et al. [2002a] and
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Heald et al. [2002b] used an anthropogenic Chinese source of CO that is 20% higher than the

Streets et al. [2002] inventory used here.

2.2. Evaluation of model with a priori sources

Before proceeding with the inversion we first examine the ability of the a priori sources,

as described in section 2.1, to simulate the TRACE-P measurements of CO. Spectroscopic

measurements of CO were taken during TRACE-P using the Differential Absorption CO

Measurement (DACOM) [Sachse et al., 1987]. CO was measured at a frequency of 1 Hz with

an estimated 1-second precision of 1%. We use here the 1-minute average data, and further

average it over the GEOS-CHEM 2�2.5Æ grid along the flight tracks for the purpose of model

evaluation.

The GEOS-CHEM simulations of CO and tagged CO tracers were intialised in January

2000 and conducted for 16 months (through April 2001). The 14-month simulation before the

start of TRACE-P effectively removes the influence from initial conditions. We sample the

model fields along TRACE-P flight tracks, and compare to the observations averaged over the

2�2.5Æ model grid. We remove stratospherically influenced air as diagnosed by O� � 100 ppb,

and verified that this criterion does not remove any pollution plumes (O� was occasionally

above 100 ppb in Chinese urban plumes, but not when averaged over the 2�2.5Æ grid). We

also ignore data east of 150ÆE, which are mainly from transit flights (Plate 1).

A general statistical comparison of model results with observations is shown in Figure

2. The model is on average 23 ppb too low; this discrepancy is driven by the high tail of the Figure 2

distribution (CO�200 ppb), representing strong outflow from Asia. The frequency distribution
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of differences between model and observations shows an approximate Gaussian distribution

with a 13 ppb negative bias in the median. Major pollution plumes in the observations

(CO�500 ppb) are not well captured by the model.

A more detailed evaluation of the model with observations is shown in Plate 2 by the Plate 2

latitudinal gradients at different altitudes from 0 to 12 km. The model has a negative bias

in the boundary layer which increases with latitude, reaching 80 ppb (30% of the mean

total CO) between 30�40ÆN. We attribute this negative bias to an underestimate of Chinese

anthropogenic emissions, as discussed below. Above the boundary layer the negative model

bias is less, and largely disappears south of 30ÆN or above 6 km. The concentration of CO in

the free troposphere is relatively more sensitive to biomass burning and to sources outside of

Asia [Liu et al., 2002].

3. Inverse Model

3.1. Description

Measured concentrations of CO (assembled in measurement vector �), are related to the

sources of CO (assembled in a state vector �) by the following relation:

� � ��� �� (1)

The state vector � as defined here comprises annual source estimates from different

geopolitical regions and from different CO source types; its composition will be discussed

in section 3.3. The measurement vector � comprises the TRACE-P CO data averaged along
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the flight tracks over the model grid. The Jacobian matrix � describes the forward model

and is constant under our linear assumption. The error vector � includes contributions from

measurement noise, sub-grid variability of observations, and errors in model parameters

(transport, chemistry, sub-regional emission patterns). The ensemble characteristics of these

errors are described by the measurement error covariance ��, representing a sum of the

covariance matrices from individual sources of error.

An inverse model describes the mathematical mapping from the measurement vector to

the state vector. Here, the inverse model describes the best estimate of sources of CO that

is consistent with both the aircraft observations of CO concentrations during TRACE-P and

the a priori sources of CO, given their respective uncertainties. The fundamental idea of

an optimal estimation inverse method is to minimise a cost function ���� (that is, to solve

�
�
���� � �). We use a standard least-squares formulation for ����:

���� � ����������
�
������ � ��� ���

����� ��� ���� (2)

where �� is the a priori value of the state vector (comprised of the a priori sources), �� is

the estimated error covariance matrix for ��, and all other variables are as defined previously.

Solution to������ � � yields

�� � �� � ������
�
�� ���� ��������

�
�� ����� (3)

�� � ������
�
�� ���� ���� (4)
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where �� is the optimised a posteriori state vector and �� is the a posteriori error covariance

matrix, describing the error on ��. The value of the cost function before, during, and after all

the observations have been ingested provides a useful indication of the quality of the inversion.

In a successful inversion, ���� should be of the same order as the number of observations. A

value of ���� that is too large signals that one or more contributions comprising �� may be

underestimated or that the prior constraint is too tight; alternatively if ���� is too small one or

more contributions comprising �� may be overestimated or the prior constraint may be too

loose.

3.2. Error Specification

The Asian emission inventory of Streets et al. [2002], used here to define the a priori

state vector ��, includes uncertainty estimates for individual countries and processes derived

by propagation of errors in the bottom-up approach. These uncertainties are listed in Table

1. Additionally we assign source uncertainties of 30% for North America and Europe and

50% for the rest of the world; TRACE-P was not designed to provide information on these

regions so accurate specification of errors is not essential. We assign the source from biomass

burning an uncertainty of 50%. The chemical source from oxidation of methane and biogenic

NMVOCs is defined largely by methane, and we assign it an uncertainty of 25% based on

constraints on global OH from observations of CH�CCl� [Prather and Enhalt, 2001]. The

sensitivity of the a posteriori solution to the assumed emission uncertainties in the inverse

model will be assessed in section 4.

The total measurement error �� includes contributions from observation noise,
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representativeness errors, and errors in the forward model. Estimating errors due to the model

is non-trivial. We do so here by computing the statistics of the relative difference between

the aircraft observations and the model, (��� � ����, as a function of altitude and for two

latitude ranges (Figure 3). We assume that the mean model bias, as diagnosed by the mean Figure 3

relative difference, is due to errors in the a priori sources, and that the variance about this mean

value represents errors due to the model. Bey et al. [2002] showed that the GEOS-CHEM

simulation of transport during TRACE-P was unbiased, supporting our assumption, and an

intercomparison of CTM simulations of CO during the TRACE-P period [Kiley et al., 2002]

also shows no evident GEOS-CHEM transport bias. By subtracting the mean bias for each

altitude and latitude range in Figure 3 we are left with the residual relative error (RRE). Then

for each individual observation �� we calculate an absolute model error as RRE���. We

assume no error covariance between observations. Typical values for the RRE are between

0.2 and 0.3, as can be seen from Figure 3. The RREs calculated from the simulation with

a priori sources show higher values in the free troposphere, but this difference disappears in

the simulation with a posteriori sources, discussed below.

Values of the mean bias as shown in Figure 3 are consistent with those reported in Figure

2. The TRACE-P domain (Plate 1) can be split into two distinct regions, characterized by

differences in airmasses sampled [Blake et al., 2002]. North of 30ÆN, airmasses were heavily

influenced by fossil fuel and biofuel emissions from China, Korea and Japan; south of 30ÆN

and in the free troposphere airmasses were influenced also by biomass burning. Mean bias

statistics for both regions show an underestimate of emissions in the boundary layer. In the

free troposphere, there is still an underestimate above 30ÆN but an overestimate at lower
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latitudes. These mean bias statistics suggest that a priori anthropogenic emissions are too

high, while biomass burning emissions are too low.

Our method of quantifying model transport error is a major advance over previous inverse

model studies which have estimated the total measurement error by calculating the standard

deviation of the discrepancy between model and measured monthly mean values in the surface

data used for the inversions (e.g., Bousquet et al. [1999], Kasibhatla et al. [2002]). Our

method can be used iteratively to improve the estimate for model errors. To illustrate this we

re-calculated values of RRE using the a posteriori CO sources (to be presented in section 4).

We find that the a posteriori sources, although they reduce greatly the bias between simulated

and observed concentrations, yield values of RRE that are comparable with those calculated

using a priori emissions. This supports our assumption that the mean bias is largely due to

errors in the emissions and the variability is due to errors in the transport.

Additional errors contributing to �� include measurement noise (�1% of the

concentration) and representativeness error, describing the mismatch between the model and

observations due to sub-grid scale variability. We quantify the representiveness error by

examining statistics of the sub-grid variability in the observations over the 2�2.5Æ GEOS-

CHEM model grid. We compute this error for each sampled model grid square and find that

it is typically 5-10%. We thus find in our error analysis that model error represents typically

73% (mean=38 ppb) of the total measurement error budget and is therefore the most important

to quantify; representativeness error accounts for approximately 25% (mean=14 ppb); and

instrument noise account for the remaining 2% (mean=2 ppb).
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3.3. Selection of State Vector

The ability of the observing system to determine different elements of the state vector,

taking into account the assigned measurement and a priori state uncertainties, can be tested

by inspecting the matrix of averaging kernels � � � � ������ , where � is the identity matrix

[Rodgers, 1976], and �� is computed from equation 4. Averaging kernels peaked at their own

state vector element denote a well constrained source. Starting from the ensemble of source

regions and processes in Table 1, we used averaging kernels to determine which sources

or aggregation of sources could be constrained independently with the TRACE-P data. We

find that fossil fuel and biofuel emissions within a given country are too co-located to be

retrieved independently, and such is the case also for biomass burning except for China.

We must also aggregate emissions from Japan and Korea, as TRACE-P does not provide

independent information on the two (Japanese outflow sampled in TRACE-P had generally

passed previously over Korea [Palmer et al., 2003]). We thus define a six-component state

vector (CHBFFF, KRJP, SEA, IN, CHBB, RW) for which the averaging kernels are shown in

Plate 3. Even with this aggregated state vector there is poor definition of the combined Korea Plate 3

and Japan source, reflecting the relatively small uncertainties assigned by Streets et al. [2002]

for a priori emissions from these countries (Table 1). We also find that the Chinese biomass

burning source is strongly correlated with the non-Asian source of CO (rest of the world);

both of these sources affect mostly the free troposphere in the TRACE-P observations.
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4. Results

We apply the optimal inverse model described in the previous section to the TRACE-P

data. We use a �	 quality control to remove outliers (4% of the data), leaving 1825

observations. Results shown in Plate 4 indicate that the a priori anthropogenic emissions from Plate 4

China are 30% too low, while emission estimates defined largely by biomass burning (SEA

and IN) are too high. The inversion returns negative emissions for India, an unphysical result

which will be discussed below. The increase in Chinese anthropogenic emissions is driven by

the model underestimate in the boundary layer (Plate 2 and 3), while the decrease in biomass

burning derives from the model overestimate in the free troposphere (Plate 2 and Figure

3). There is also a 20% increase in the source from the rest of the world which represents

effectively a correction to the background. The cost function (equation 2) computed using

a priori emissions is 2120, a value larger than the number of observations (�=1909), which

after the measurements have been ingested, is reduced by 30% to 1497, suggesting an overall

improvement in the prescribed emission sources.

We can test the utility of the inverse model by using the a posteriori emissions with the

tagged tracers in the forward model to simulate TRACE-P observations. In this simulation,

the contribution of Indian sources of CO along the TRACE-P flight tracks is effectively zero.

In general a posteriori emissions improve the comparison with observations (Figure 2). The

median value of the difference between model and observed CO decreases from -14 ppb

to -4 ppb, while the mean bias is reduced by 30%. The lesser improvement in the mean

reflects the difficulty in reproducing the high tails of the observed frequency distribution. The
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frequency distribution of the differences is noticeably tighter. Plate 2 shows that in general

the a posteriori emissions simulate the observed latitudinal variability of CO better than the

a priori emissions, significantly reducing the large discrepancies in the boundary layer and

elsewhere.

The inverse model approach is sensitive to uncertainties assumed for the measurements

(��) and the a priori emissions (��) (equation 4). Model error largely defines the measurement

error �� (section 3). We find that doubling and halving the uncertainty of emission estimates

and model error leads to results not statistically different from the best estimate, i.e., all

results��� values are consistent, suggesting that our best estimate of a posteriori sources

is robust (Plate 5). The only notable exception is India whose results change significantly Plate 5

when the source emission uncertainty is halved or when the model error is doubled. A priori

biomass burning emissions from India are assigned a large uncertainty (Table 1). It is likely

that our statistical representation of the model transport error based on the RRE underestimates

the actual error in modeling the transport of Indian outflow to the TRACE-P region. Indian

influence in the model along TRACE-P flight tracks is mainly from a few flights, and reflects

biomass burning effluents lifted by convection to the free troposphere and then advected in

the westerlies. Convective events in GEOS-CHEM (and other global or mesoscale CTMs)

are parameterised as sub-grid processes and difficult to simulate deterministically. Indeed,

the Kiley et al. [2002] intercomparison of TRACE-P simulations of CO shows that agreement

with observations was worst during convective events diagnosed by satellite infrared imagery.
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5. Comparison with Previous Work

Kiley et al. [2002] presented an intercomparison of TRACE-P CO simulations from seven

different CTMs using the Streets et al. [2002] emission inventory for Asia. All models found

an underestimate of CO in the boundary layer, consistent with the results presented here and

which we attribute to a 30% underestimate of anthropogenic Chinese emissions (a posteriori

emission value = 142 Tg CO/yr). Carmichael et al. [2002] also investigated this underestimate

of Chinese CO with a regional CTM and attributed it to an underestimate in emissions from

the domestic combustion sector, in particular from residential coal burning. They tentatively

suggest that a factor of 3-5 increase in the Streets et al. [2002] inventory for that sector

would be required to reconcile model results with the observed concentrations. Such an

increase would correspond to Chinese anthropogenic emissions of 169�228 Tg CO/yr, a value

20�60% greater than the value presented here. Carmichael et al. [2002] focussed on data

from just a few flights. Our inverse model approach, by using the ensemble of flight data, may

be more suitable for national extrapolation.

Our a posteriori biomass burning emissions are considerably lower than the a priori

values, a result largely driven by the measurements in the free troposphere (Plate 2). This

result is qualitatively consistent with CO column data from the MOPITT satellite instrument,

which imply much lower biomass burning emissions of CO in Southeast Asia and Northeast

India than used here as a priori [Heald et al., 2002a]. Correlations of CO with HCN

in the TRACE-P data, with HCN taken as a tracer of biomass burning, do not imply an

underestimate of biomass burning CO emissions [Li et al., 2002; Heald et al., 2002b].
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Anthropogenic Chinese sources of HCN may complicate this interpretation [Singh et al.,

2002]. A multi-species inversion would then be needed to exploit such correlations between

CO and other species measured in TRACE-P.

Specific investigation of biomass burning influences in the TRACE-P data was conducted

by Carmichael et al. [2002] and Tang et al. [2002] using their regional CTM with Asian

biomass burning emissions (67 Tg CO/yr) that are a factor of two smaller than our a priori

values. Carmichael et al. [2002] constructed spatial maps of emitted CO concentrations using

back-trajectories from observed and simulated TRACE-P CO concentrations. They found, in

particular, large differences over biomass burning regions of Southeast Asia and Northeast

India. Tang et al. [2002] used their CTM to identify nine flights during TRACE-P that were

particularly impacted by biomass burning emissions from Southeast Asia. We analysed these

flights using our a priori and a posteriori emissions and found no significant bias in the

simulations.

Kasibhatla et al. [2002] and Pétron et al. [2002] previously used CO observations from

the CMDL network [Novelli et al., 1998] to determine Asian sources of CO. Both studies

found that their a priori Asian emissions [Olivier et al., 1996] were too low. Kasibhatla et al.

[2002] showed that a 50% increase in Asian fuel consumption (to 350-380 Tg CO/yr) and

a 100% increase in Asian biomass burning emissions (to 110-130 Tg CO/yr) were required

to reconcile the CMDL concentration data from 1994; while Pétron et al. [2002] used data

averaged between 1990-1996 and required a factor of two increase in Asian anthropogenic

emissions (to 548 Tg CO/yr) and a 25% increase in emissions from biomass burning. Our

a posteriori anthropogenic source of CO from Asia (Table 1) is less than that derived in these
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two studies, and our a posteriori biomass burning source of CO is much lower. In general,

differences in magnitude of a posteriori emissions between those reported here and those

reported by Kasibhatla et al. [2002] and Pétron et al. [2002] are likely due to the type of data

used to determine continental source emissions. In particular, Kasibhatla et al. [2002] and

Pétron et al. [2002] derived emission estimates using the sparse network of NOAA/CMDL

surface observations that are not intended to sample continental air masses. Consequently,

different sources of CO that contribute to these data are difficult to interpret. Here, we

report emission estimates that use high density aircraft observations of continental outflow

directly downwind of source emissions which are ideal for determining continental sources.

In particular, Pétron et al. [2002] use a biomass burning inventory that overestimates the

source of CO from agricultural waste burning [Kasibhatla et al., 2002], and because they

assign uncertainties using a percentage of the emissions, the uncertainty of the Asian state

vector element is overestimated. Consequently Asian emissions can be adjusted more easily

to improve the fit to observations than other emission sources, leading to an unphysically large

emission estimate for Asia. The source of CO from the rest of the world, including the source

from chemical oxidation, is comparable between the inverse model studies: 2340 Tg CO yr��

[Pétron et al., 2002], 2240 Tg CO yr�� [Kasibhatla et al., 2002], and 2240 Tg CO yr�� for the

work shown here.

6. Conclusions

We used aircraft observations of Asian outflow from the TRACE-P mission to improve

estimates of CO emissions from Asia using an optimal estimation inverse method. This is the
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first time than an inverse model has been applied to infer emissions from a large geopolitical

source region using aircraft observations. We showed that the high density of coverage from

an aircraft mission allows quantification of model transport error, a notorious difficulty in

inverse modeling.

We used the GEOS-CHEM CTM, driven by customised a priori bottom-up emission

inventories for Asia [Streets et al., 2002; Heald et al., 2002b] as a forward model to simulate

the aircraft observations. The Streets et al. [2002] inventory includes a detailed error budget

which provides important information for the inverse model. Errors associated with the

observations in the context of the inverse model include errors in CTM transport and other

CTM parameters, the errors in representativeness due to the inability of the model to simulate

observed sub-grid scale structure, and instrument noise. We describe a new method of

quantifying CTM errors from the mean difference statistics between the simulated and

observed CO concentrations, exploiting the high density of observations available from the

aircraft mission. Mean bias between the model (with a priori emissions) and the observations

is assumed to reflect errors in emissions, while the relative variance about this mean bias

is assumed to reflect errors in transport. The model transport errors derived in that manner

are in the range 20-30%. The representativeness error, estimated from the observed sub-grid

variability in the aircraft CO data, is typically 5-10%. Instrument noise (�1%) is negligibly

small relative to the other sources of error.

Our inverse model analysis implies a 30% increase in Chinese anthropogenic emissions

(to 142 Tg CO/yr) of CO relative to the a priori. A posteriori anthropogenic emissions from

other countries are not so different from their a priori values. Our best estimate of Asian
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anthropogenic emissions is much lowere than previous model studies that used sparse surface

observations of CO as constraints [Kasibhatla et al., 2002; Pétron et al., 2002]. We find that

a priori emissions of CO from biomass burning in Southeast Asia and India are too high,

consistent with MOPITT observations during TRACE-P [Heald et al., 2002a] but inconsistent

with other TRACE-P studies that used HCN as a tracer for biomass burning [Li et al., 2002;

Heald et al., 2002b]. Anthropogenic Chinese sources of HCN may complicate interpretation

of CO-HCN correlations [Singh et al., 2002]. Acetonitrile (CH�CN) or methyl chloride appear

to be more robust tracers of biomass burning [Singh et al., 2002; Blake et al., 2002].

Our future work will exploit the correlations of CO with other species to improve the

top-down constraints for the inversion of the TRACE-P observations. For example, including

CH�CN in the inverse model analysis should provide valuable constraints on emissions of CO

from biomass burning [Li. et al., 2002]. Including CO	 should help to disaggregate emissions

from Korea and Japan whose CO	/CO emission ratios are very different [Suntharalingam

et al., 2003].
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Tables

Table 1. Annual a priori sources of CO (Tg CO yr��) for the inverse model analysis.

Region Biofuels��	Biomass burning��	Fossil Fuel��	 Methane and

(BF) (BB) (FF) biogenic NMVOCs

China (CH) 45�32 19�10 64�27

Korea (KR) 4�2 0.3�0.2 5�2

Japan (JP) 2�0.4 0.8�0.4 7�3

India (IN) 29�24 39�20 17�8

Southeast Asia (SEA) 38�35 82�41 16�7

Rest of World (RW) 70�32 340�176 273�60

TOTAL 188�62 481�176 382�67 1205����

�Sources from BF, BB, and FF include the secondary source of CO from the oxidation of NMVOCs

co-emitted with CO.

	The magnitude and uncertainty of emission estimates for fuel consumption from East Asia are from

Streets et al. [2002] (section 3); emissions estimates for fuel consumption in the rest the world are

from Yevich and Logan [2002] for biofuel and Duncan et al. [2002a] for fossil fuel; global emission

estimates for biomass burning are from Duncan et al. [2002b], with temporal variability over the

TRACE-P period from Heald et al. [2002b]; and the global source from oxidation of methane and

biogenic NMVOCs is as described in the text.
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Plate 1. TRACE-P flight tracks for the DC-8 and P3-B aircraft. The inverse model is applied

to the ensemble of data west of 150ÆE which includes 229 hours of CO measurements from the

two aircraft, distributed over 28 flights from Feburary 27th to April 3rd, 2001.
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Figure 1. Source regions for tagged CO simulations. See Table 1 for emission estimates.
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Figure 2. Statistical comparison of simulated and observed CO from TRACE-P, for the model

with a priori sources (left panels) and a posteriori sources (right panels). The observations have

been averaged over the 2�2.5Æ model grid. Data influenced by the stratosphere (O� � 100 ppb)

or away from the western Pacific rim (longitudes � 150ÆE) are excluded from the comparison.

Top: frequency distributions of simulated (solid) and observed (dotted) CO. Bottom: frequency

distribution of the difference between simulated and observed CO.
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Plate 2. Latitudinal gradients of measured and modeled CO concentrations over the TRACE-P

domain on a 2�2.5Æ grid. Observations (circles) are averaged over the altitude range shown

in the figure, and over 5Æ latitude bins. Vertical bars denote 1-� values about the mean. The

model is sampled along the TRACE-P flight tracks for the flight days, and values are averaged

across the same latitude and altitude ranges as the observations. Model values are shown for

the simulations with a priori (triangles) and a posteriori (squares) sources. Data influenced by

the stratosphere (O� � 100 ppb) or away from the western Pacific rim (longitudes � 150ÆE)

have been excluded from the comparison. Numbers inset at the top of each panel refer to the

number of observations used to compute the mean statistics.
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Figure 3. Relative GEOS-CHEM model errors in the simulation of CO during TRACE-P,

as a function of altitude for the model a priori sources of CO (top) and a posteriori sources

(bottom). Squares denote the mean bias and horizontal lines denote 1-� values about the mean.

Numbers inset of each panel refer to the number of observations used to compute statistics at

each altitude.
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Plate 3. Individual rows of the averaging kernel matrix � for the inversion of CO sources

with the TRACE-P observing system. Different colors distinguish rows of �, listed in the

legend, with the corresponding columns indicated on the x-axis. Lines connect the symbols for

clarity and do not have any physical significance. The six-element state vector includes sources

from Chinese fuel consumption (CHBFFF), total emissions from Korea and Japan (KRJP),

total emissions from Southeast Asia (SEA), total emissions from India (IN), Chinese biomass

burning (CHBB), and the rest of the world (RW) including the source of CO from biogenic

VOCs.
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Plate 4. A posteriori sources calculated using TRACE-P observations. The error bars represent

the 1-� value about the mean. A priori sources are presented alongside for comparison.

Elements in the abscissa are as in Plate 3.
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Plate 5. Sensitivity of the calculated a posteriori sources to the error estimates in the inverse

model. Vertical bars denote 1-� value from ��. “Best estimate” shows the a posteriori source

from the standard inversion (Plate 4). A posteriori sources derived from inversions with

modified errors on the a priori source (S�) or on the model error are also shown. Elements

in the abscissa are as in Plate 3.




